

Mastering the Art of Approaches

A Guide to Instrument Approach Procedures

Instrument Approach Procedures (IAPs)

What is an Instrument Approach?

Instrument approaches are navigationally aided approaches designed to allow pilots to fly in and land in non-visual conditions.

What can they be used for?

- Descending through Instrument Flight Conditions (IMC)
- Safely avoiding terrain and obstacles you may not be able to see
- Keeping you safe when you're eyes can't

Instrument Approaches

Types of Instrument Approaches

There are 8 types of Instrument Approach

We will be discussing

- ILS
- Localizer
- RNAV (GPS)
- RNAV (RNP)
- GLS/GBAS

We will NOT be discussing:

- NDB
- VOR
- TACAN
- SRA

What is ILS

ILS = Instrument Landing System

- ILS provides aircraft with a lateral and vertical path to the runway
- Allows for safe operation in non-visual (IMC) conditions
- Provides very high accuracy through the use of a Localizer and Glideslope
- Most "basic" approach form, installed at thousands of airports worldwide

What is RNAV

RNAV = aRea NAVigation

- Designed to give aircraft the ability to use GPS "fixes" to navigate the globe
- Provides moderate accuracy for approaches
- Lower minimums than VOR and NDB approaches, but higher than ILS/GLS
- Used in 2 different types of approaches: RNP and GPS

What is RNP

RNP = Required Navigation Performance

- RNP uses onboard systems and satellites to verify position accuracy
- Can be programmed in the FMC/MCDU to ensure adherence
- Allows for lower minimums, but still higher mins than LPV, ILS and GLS
- Usually incorporates RF (Radius-to-Fix) which are curved path segments

What is GLS/GBAS

GBAS = Ground Based Augmentation System | GLS = GBAS Landing System

- GLS Uses the GBAS system to provide higher accuracy in terminal areas
- Intended to eventually replace the conventional ILS system -
- Provides ILS-like accuracy without the possibility of ground interference
- Eliminates the need for a localizer and glideslope antenna -
- Only used at select airports in the world
 - US Airports which use GLS are: IAH, EWR and SFO. All of which are UAL Hubs...

Briefing Approaches

General Approach Briefings

Briefing Must-Haves:

- Approach navaid (as needed)
- Final Approach Course
- Approach specific minimums
- Crosscheck arrival plate with FMC and aircraft
- Re-verify all points if a runway or procedure change occurs

How to brief an ILS or Localizer Approach

Primary Differences:

- ILS = Lateral AND Vertical guidance using ground-based navaids
- LOC = Lateral ONLY guidance using ground-based navaids

Briefing Must-Haves

- Localizer frequency and final approach course
- Approach entry requirements (RNAV-1, DME/DME/IRU etc.)

How to brief a GLS (GBAS) Approach

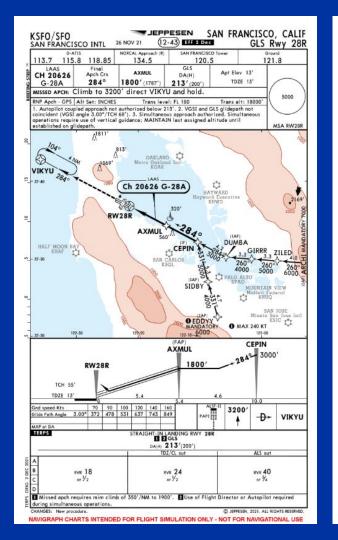
Primary Differences:

- GLS = GBAS Landing System
 - GBAS = Ground Based Augmentation System
- GPS-Dependent alternative to ILS, uses satellites to draw LOC/GS instead of ground based LOC and GS antenna

Briefing Must-Haves

- GBAS RPI (Reference Path Indicator) code, frequency, and FAC
- Approach entry requirements (RNAV-1, DME/DME/IRU etc.)

How to brief a GLS (GBAS) Approach


Important Requirements:

- MUST have Multi-Mode Receiver (MMR) equipped on board (Boeing only)
- MUST request the "GLS xx" runway with Approach Control

Things to note:

- GLS often uses the same fixes and transitions as the ILS
- GLS usually matches standard ILS minimums
- Typically only flown by Boeing acft though some newer Airbus are capable

How to brief an RNAV (GPS) Approach

Primary Differences:

- Most are straight-in though some are offset
- GPS approaches offer LPV on some, which can get near-ILS minimums

Briefing Must-Haves:

- Carefully select minimums (LNAV, LNAV/VNAV, or LPV)
- Take note of any offset FAC or necessary turns to final

LNAV vs LNAV/VNAV vs LPV vs LP

Primary Differences:

- LPV = Localizer Performance with Vertical Guidance, GPS version of an ILS approach
- LP = Localizer Performance, essentially the GPS version of a LOC approach
- LNAV/VNAV = Vertical guidance down to minima, but less accuracy = higher mins
- LNAV = Lateral Guidance ONLY -> step-down or calculated DA required (mins+50)

Briefing Must-Haves

- Minima revision if flying LNAV only
- Review if minimums are DA or MDA
- Review step-downs for non-vertical guidance procedures (LNAV and LP)

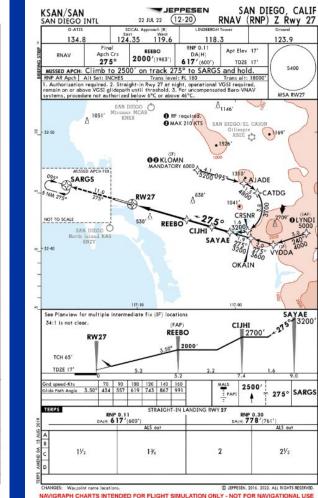
How to brief an RNAV (RNP) Approach

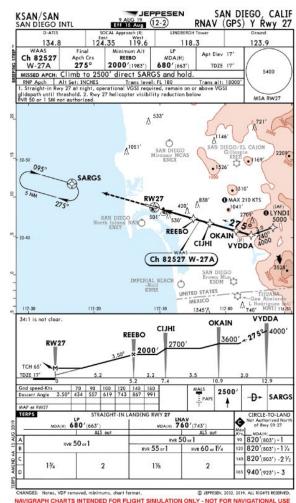
Primary Differences:

- RNP means more requirements
- GPS monitoring MUST be installed onboard

Briefing Must-Haves

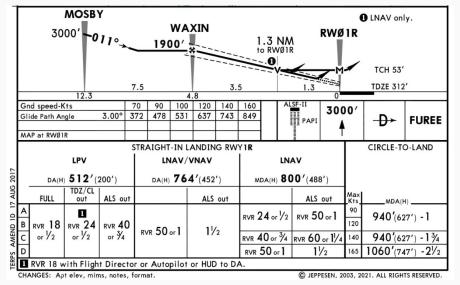
- RF Leg point outs and leg MEA checks
- Use LNAV/VNAV minimums 99% of time, unless VNAV is unreliable




What's the difference? RNAV (GPS) and RNAV (RNP)

Primary Differences:

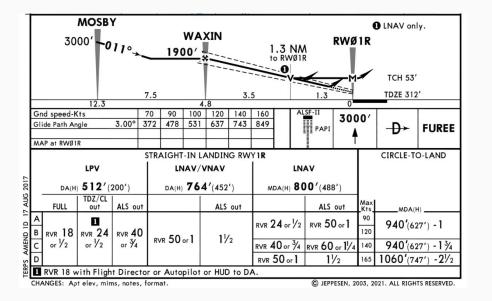
- RNP approaches have stricter requirements
- RNP requires GPS accuracy monitoring, GPS does not
- RNP Approaches usually get you lower approach minimums, unless using LPV
- Only GPS approaches give the option for LPV, which has lower mins than RNP


Minima Selection

Minima Selection

Take a look at the minimums section:

- Several are listed, but you must choose wisely.
- Select the minimums based off YOUR AIRCRAFT and its capability

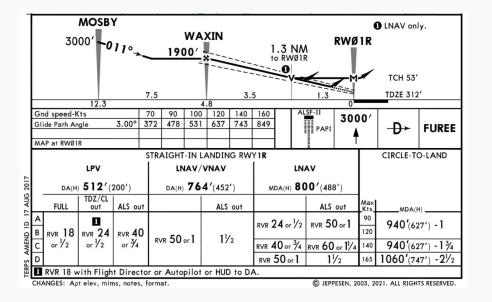


Minima Selection, cont'd

Let's say you're flying a 737-900ER.

You're using the VNAV function to descend along the RNAV glidepath.

Which minimums should you select?

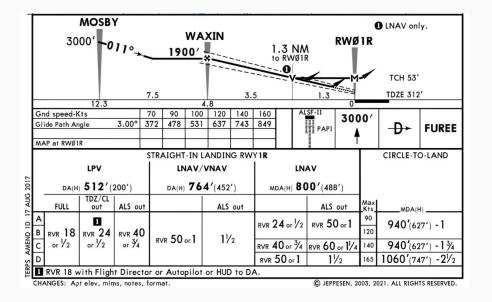


Minima Selection, cont'd

Now let's say you're in an SR-22

You're using the LPV GP function to descend along the RNAV glidepath

Which minimums should you select?



Minima Selection, cont'd

Let's go back to the 737-900ER

You are using the RNAV approach to line up with Runway 1R then circle-to-land on Runway 30.

Which minimums should you select?

Approach Stability

What is a "stable" approach

ICAO defines a "stable approach" as:

"An approach is considered to be stable when all of the following conditions are met: All briefings and checklists have been actioned. The aircraft is in the planned landing configuration, [and] The aircraft is on the correct flight path."

How to create a "stable approach" environment

- Complete all briefings well prior to conducting the approach
 - Usually about 10-20 minutes BEFORE you expect to be cleared for the approach
- Confirm all your aircraft's weights and landing speeds
- Make minimal adjustments to pitch and power to the max extent possible
- FOCUS and RELAX. A tense mindset will cause knee jerk reactions
- The plane is first and foremost. Avoid distractions and other things

IF YOU BECOME UNSTABLE: GO AROUND!! DON'T BE A HERO

Follow Ken Davis' words: You Can Always Go Around

Stable Approach Visual Cues

Visual aids can also cue you in as to whether your approach is stable

- Acceleration/Deceleration indication on your PFD?
- Excessive rate of descent?
- No more than 1 deviation from Glidepath/LOC?
- Use the HGS if the airplane has it!

Flare, Touchdown, and Rollout

Glidepath to Flare: Understanding timing

Transitioning from the glide to the flare can be very tricky. Here are some tips

- Once the RA callouts hits about 50 ft, look at the opposite end of the runway instead of focusing on the aiming point
- As you flare, pull gently back on the yoke to aim for 3-5° nose up
- Once in your flare, hold the pitch angle and allow the plane to naturally land
- Avoid reintroducing nose down pressure and simply hold the flare pitch

The Flare: When to Reduce Power

Power management is essential for a smooth landing. Here are some tips:

- Begin the power reduction at the '50' RA (Radio Altimeter) Callout
- SLOWLY reduce the power. Do not cut the speed all at once.
- Aim to smoothly reduce power so you are at idle by 20 feet RA.
- Once below 20 ft RA, hold pitch angle and let speed fall naturally until touchdown

Helpful Visual Aids

HGS Autonomous Flare Cue

Opposite Runway End

Questions? Comments? Concerns?

Want to learn more?

Still curious on these topics or procedure details?

Ask our mentors!

- FlyUVA Mentors are available in our Discord server!
- Ask your question as a post on the **support-forum** and it will be answered!
- Our mentors are real-world pilots or have deep knowledge of the aircraft that they provide mentorship for.
- Don't be scared to ask for help! There are no dumb questions!